
JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 20 22 NOVEMBER 2000
Comparison of planar shear flow and planar elongational flow
for systems of small molecules
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We use nonequilibrium molecular dynamics to simulate steady state planar shear flow and planar
elongational flow of fluids of small molecules at constant volume and temperature. The systems
studied are Lennard–Jones diatomic molecules~chlorine!, and a series of linear Lennard–Jones
molecules with one, two, and four sites. In our simulations of planar elongational flow, we employ
Kraynik–Reinelt periodic boundary conditions, which allow us to obtain precise values of the
steady state planar elongational viscosity. We validate our application of Kraynik–Reinelt periodic
boundary conditions by comparing the zero strain rate shear and elongational viscosities. The results
show that the elongational viscosity is proportional to the shear viscosity in the zero strain rate limit,
as expected. The viscosity, pressure, and internal energy of the atomic Lennard–Jones fluid show
exactly the same behavior for the two types of flow when both sets of results are plotted against the
second scalar invariant of the strain rate tensor. The results for the diatomic and four-site molecules
show differences in the pressure, energy, and viscosity outside the Newtonian regime when plotted
against the second scalar invariant of the strain rate tensor. The differences in the properties in the
nonlinear regime increase with both strain rate and molecular length. ©2000 American Institute of
Physics.@S0021-9606~00!50144-5#
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I. INTRODUCTION

The rheological properties of molecular and polyme
fluids have a direct impact on many manufacturing proces
such as blow-forming, injection molding, and sheet casti
The flows occurring during these processes are complic
and will usually involve some combination of planar Coue
flow ~PCF!, planar elongational flow~PEF!, and biaxial/
uniaxial stretching flow~BSF/USF!. Control of these pro-
cesses demands an adequate understanding of rheolo
properties, and preferably, an ability to predict rheologi
behavior from the molecular characteristics of the mater
in question.

Our current understanding of the molecular basis of r
ology is based almost entirely on models that involve ma
assumptions. Discriminating tests of these assumptions
only be performed at the molecular level, so there is a n
for direct investigations of the molecular processes that
termine rheological behavior. Nonequilibrium molecular d
namics~NEMD! is an ideal tool for the investigation of th
microscopic detail underlying the macroscopic properties
fluids, but some questions of technique, validity, and e
ciency need to be addressed before NEMD can confide
be used to test theories of polymer rheology or to direc
predict the rheological properties of polymeric fluids.

Although the equations of motion and the correspond
periodic boundary conditions~PBCs! for the simulation of
shear flow are now well known and validated, the simulat
of elongational flow has been more difficult. Early PE
simulations involved contracting the simulation cell in one
9120021-9606/2000/113(20)/9122/10/$17.00
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the directions parallel to the~orthogonal! periodic boundaries
while expanding it in the perpendicular direction, so as
keep the volume constant. For simulations of systems w
short-ranged interactions the minimum image convent
imposes a limit on the minimum simulation system dime
sions, and this leads to a limitation on the length of t
simulation, which may prevent the attainment of a stea
state before the end of the simulation. Several different te
niques have been proposed as solutions to this problem
the most successful approach to date is to use the tempo
and spatially periodic boundary conditions devised
Kraynik and Reinelt.1 These have been applied to noneq
librium molecular dynamics simulations of elongational flo
of atomic fluids by Todd and Daivis2–4 and also by Baranya
and Cummings.5 The Kraynik–Reinelt periodic boundar
conditions allow simulations of planar elongational flow
unlimited duration to be performed. This eliminates the d
ficulties of extrapolation of a transient response into
steady state or the zero frequency extrapolations that w
necessary in previous methods. However, the K-R PB
cannot be used for uniaxial or biaxial elongational flow.
this case, the oscillatory elongational flow algorithm, w
zero frequency extrapolation6,7 is a viable alternative. The
transient behavior of a model polymer melt in uniaxial elo
gational flow has recently been studied by both experime
and computer simulation methods by Kroger, Luap, a
Muller.8

Only a few comprehensive comparisons of shear a
elongational flow simulations of atomic fluids have prev
2 © 2000 American Institute of Physics
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ously been performed.9–11 The main conclusions to b
reached are that the ratio of elongational to shear visco
approaches the expected value in the zero strain rate l
and that the strain rate dependence of the shear and p
elongational viscosities fall on a universal curve when pl
ted as a function of the second scalar invariant of the st
rate tensor. The only existing NEMD data for the steady s
elongational viscosity of a molecular fluid were obtained
chlorine,12 but the results were not conclusive. No systema
study of the effect of molecular size on the comparison
tween shear and elongational rheology of molecular flu
has previously been published.

In this paper, we investigate the shear and elongatio
strain rate dependence of several properties including the
cosity, pressure, and internal energy for a variety of flui
To validate our technique, we present results for a sim
model of liquid chlorine that can be compared to previo
work. We also present results for monatomic and two- a
four-site Lennard–Jones chain molecules to show the ef
of molecular size on the rheological behavior.

II. MOLECULAR MODELS

The atomic fluid studied has an interaction poten
given by the truncated and shifted Lennard–Jones pote
energy function, i.e.,

f~r i j !54eF S s

r i j
D 12

2S s

r i j
D 6G2fc , ~1!

wherer i j is the interatomic separation,e is the potential well
depth, ands is the value ofr i j at which the unshifted poten
tial is zero. The shiftfc is the value of the unshifted poten
tial at the cutoffr i j 5r c , and is introduced to eliminate th
discontinuity in the potential.

We used the same molecular model for our simulatio
of liquid chlorine as the one used by Evans, Edberg,
Morriss13 and Hounkonnou, Pierleoni, and Ryckaert12 to al-
low a direct comparison of our results with previous wo
This model represents chlorine as a diatomic Lennard–Jo
molecule withr c52.5s and a fixed bond length of 0.63s.
The Lennard–Jones potential parameters quoted by
above authors for an adequate representation of the pro
ties of chlorine are:s53.332 Å ande/kB5178.3.

The molecular model that we have chosen to repres
chain molecules is the Lennard–Jones chain model. E
molecule in this model consists ofn sites of equal massmia

interacting via a truncated and shifted LJ interactionr c

521/6s), joined by rigidly constrained bonds of lengthl
5s. An LJ potential with this truncation point is ofte
known as the WCA14 potential, and results in purely repu
sive interactions. LJ interactions can occur between any
different sites except those connected by a bond. The e
librium phase behavior of a model that is identical apart fr
the choice of cutoff distancer c has been studied by Johnso
Muller, and Gubbins.15

Brownian dynamics simulations of elongational flow f
a single Kramers model molecule~freely jointed chain with
no excluded volume! have been reported by Liu.16 In the
terminology of Birdet al.17 our model is a bead-rod mode
ty
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with excluded volume. Another frequently studied model
the bead-spring model, employing either harmonic or finit
extensible nonlinear elastic~FENE! spring potentials be-
tween beads. NEMD studies of the shear rheology of FE
chain model molecules have been reported by Krog
Loose, and Hess.18

In the remainder of this paper we express all quantit
in terms of atomic reduced units in which the reduction p
rameters are the Lennard–Jones interaction site paramete
ands and the mass,mia , of interaction sitea on moleculei.
In our simulations all of themia are equal. In terms of the
corresponding quantities in real units, the reduced temp
tureT* is given byT* 5kBT/e, the density byr* 5rs3, the
pressure byp* 5p(s3/e), the energy byE* 5E/e, and time
by t* 5t/(s(m/e)1/2). Reduced strain rates are given b
e.g., ġ* 5ġs(m/e)1/2. The asterisk denoting reduced qua
tities will be dropped from here on.

III. EQUATIONS OF MOTION

The equations of motion for nonequilibrium molecul
dynamics simulations of homogeneous flows of atomic flu
have been discussed before19,20 and are given by

ṙ i5
pi

mi
1r i•¹u, ~2!

ṗi5Fi2pi•¹u2zApi , ~3!

wherer i are the atomic positions andpi are the atomic pe-
culiar momenta~i.e., the thermal components of the atom
momenta, as defined by the first equation!. Fi is the total
force on atomi due to all other atoms. The velocity gradie
tensor¹u for a combination of shear flow and planar elo
gational flow is given by

¹u5S ė 0 0

ġ 2 ė 0

0 0 0
D . ~4!

In this paper, we study only the cases whereġ50 ~planar
elongational flow! or ė50 ~planar shear flow!.

The coefficientzA is chosen so as to fix the kinetic tem
perature, which is defined as

TA5
1

kBf (i 51

N pi
2

mi
. ~5!

Several algorithms are available for this purpose.20 We use
the value ofzA that results from the application of Gaus
principle of least constraint to the imposition of consta
kinetic temperature:

zA5
( i 51

N ~Fi•pi2pi "¹u"pi !

( i 51
N pi

2 . ~6!

In our simulations of molecular fluids, we use the molecu
version of the SLLOD equations of motion given by

ṙ ia5
pia

mia
1r i "¹u, ~7!
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ṗia5Fia
LJ1Fia

C 2
mia

Mi
pi "¹u2zM

mia

Mi
pi , ~8!

wherer ia andpia represent the position and thermal mome
tum of sitea of moleculei, r i represents the position of th
center-of-mass of moleculei, mia is the mass of siteia, Fia

LJ

represents the sum of all LJ type forces on sitea of molecule
i, and Fia

C represents the sum of all bond length constra
forces on sitea of moleculei. zM is the thermostat multi-
plier, given by

zM5
( i 51

N 1/Mi ~Fi•pi2pi "¹u"pi !

( i 51
N 1/Mi pi

2 , ~9!

wherepi5Spia represents the center of mass momentum
moleculei andMi is the mass of moleculei. This expression
for zM is similar to Eq.~6! and is also derived from Gauss
principle of least constraint, but acts to keep the molecu
center-of-mass kinetic temperatureTM constant, rather than
the atomic or site temperature. Here we defineTM by

TM5
1

kBf (i 51

N pi
2

Mi
, ~10!

wheref represents the number of translational center-of-m
degrees of freedom, which depends on the total numbe
sites and the number of constraints~holonomic and nonholo-
nomic! on the system. This algorithm, including the deta
of the constraint algorithm, has been discuss
previously.21–23

Note that in the equations of motion, the same strain r
and thermostat terms are applied to all sites on a given m
ecule. This means that they only affect the center-of-m
degrees of freedom and cannot interfere with intramolec
degrees of freedom. Alternative forms of the equations
motion can be applied~for example, atomic shear with a
atomic thermostat!, but they can result in a nonzero antisym
metric stress and artificially enhanced orientational order
The combination of center-of-mass molecular shear~or elon-
gation! with a molecular center-of-mass thermostat seem
be the simplest choice that suffers the least from the dis
tions associated with incorrect assumptions about the stre
ing velocity. We refer the reader to previous work24–26on the
subtle but important issues involved in thermostats for m
lecular fluids. For our current purposes, the above equat
of motion will suffice.

When they are solved exactly, the SLLOD equations
motion will conserve the total peculiar momentum of t
system if it has been initialized to zero. However, we ha
recently found that when the SLLOD equations of moti
are solved numerically for elongational flow, any small er
in the component of the total momentum in the contract
direction ~due to unavoidable discretization and finite pre
sion arithmetic errors! can grow exponentially, resulting in
catastrophic failure of momentum conservation.4 This failure
in the numerical solution of the equations of motion is eas
prevented by initializing the total momentum to zero
usual, and then subtracting any change in the total mom
tum from the system at each timestep. This is a very sm
-
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correction, which has no effect on the results except to p
vent the exponential growth of the numerical error in t
momentum.

IV. SIMULATION DETAILS

Our algorithm for constant (N,V,TM) simulations of
Lennard–Jones chain molecules undergoing shear and e
gational flow is based on the Evans, Edberg, and Mor
algorithm,21–23 which we have substantially modified by in
cluding cell code for efficient neighbor list construction a
appropriate periodic boundary conditions for elongatio
flow simulations. The details of our cell neighbor list alg
rithm for elongational flow simulations will be publishe
separately.

To confirm that our program was producing correct
sults in both shear and elongational flow, we reproduced p
vious results for the shear and elongational viscosities
Lennard–Jones monatomic and diatomic liquids~represent-
ing argon and chlorine!. We compared the results of ou
shear flow simulations of argon at the triple-point to those
Morriss, Evans, and Hood27 and compared our planar elon
gational viscosities of argon with those of Todd and Daiv6

and Baranyai and Cummings.11 Very good agreement wa
found in all cases. Our results could not be directly compa
with the recent results of Baranyai and Cummings,5 due to
differences in the definitions of the temperatures that w
chosen for thermostating, but we observed that our visco
values were slightly higher, in agreement with their obser
tions. We do not report the results of the argon triple po
simulations here.

This paper contains the results of two sets of simu
tions. In the first set, we improve upon the planar shear
planar elongational flow results of Evans, Edberg, a
Morriss13 and Hounkonnou, Pierleoni, and Ryckaert12 for
liquid chlorine at a reduced temperature ofT50.9700 and
reduced site number densityr51.088. A system size of 864
molecules was required in these simulations, so that
minimum image convention would not be violated in PE
The reduced bond length wasl 50.630 and the interaction
between sites was a truncated~unshifted! LJ potential with
r c52.5 andfc50.0 in Eq. ~1!. Our results do not include
long-range corrections, as it has been shown28 that the radial
distribution function is distorted under PCF making the c
culation of long-range corrections by the usual methods
ficult and unreliable.

In the second set of simulations, we studied the effec
increasing the chain length on the shear and elongatio
strain rate dependence of a variety of properties. A serie
three different molecular sizes was studied, consisting
one-, two-, and four-site molecules. The parameters of
Lennard–Jones chains were as follows: the LJ potential
truncated at the minimum,r c521/6, and shifted to zero at the
truncation point. The system size was 256 molecules and
temperature and site density wereT51.000 andr50.840,
respectively. These parameters remained constant throug
this series of simulations. The state point was chosen to
respond to that previously studied by Kroger, Loose, a
Hess18 and Kremer and Grest29 in their simulations of FENE
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chain dynamics. The elongational and shear strain rates
ied between 0.0 and 5.0. We summarize the most impor
simulation parameters in Table I.

All systems were run for at least 100 reduced time un
before collecting data at all strain rates to ensure the att
ment of a steady state. This time is equivalent to 431 ps
argon, and 326 ps for chlorine. Runs at low strain rates t
longer to reach a steady state, and the lengths of some o
production runs at low strain rates were increased to impr
their statistical reliability. A few of the elongation runs
high strain rates required smaller time steps but the total t
for the production stage was kept constant regardless o
strain rate. The properties of the system were calculated
ery 0.025 time units, with these being averaged into
blocks for the production runs, enabling the calculation
standard errors in the means of all measured properties
production runs were at least 50 time units in length.

The pressure tensor for the atomic fluid~single interac-
tion site molecules! was calculated using the atomic pressu
tensor, given by

PAV5(
i 51

N pipi

M i
2

1

2 (
i 51

N

(
j Þ i

N

r i j Fi j , ~11!

TABLE II. Viscosity, pressure, and total internal energy—864 chlori
molecules,T50.9700,r51.088.

ė,ġ

PCF PEF

h p U h p U

0.00 - 1.31 29240 - 1.30 29240
0.035 6.75~0.4! 1.32 29240 6.71~0.4! 1.35 29230
0.064 6.50~0.5! 1.34 29230 6.27~0.3! 1.45 29200
0.085 6.55~0.3! 1.37 29220 6.10~0.3! 1.51 29190
0.113 6.34~0.3! 1.41 29220 5.72~0.1! 1.64 29150
0.177 5.91~0.2! 1.52 29190 5.16~0.2! 1.92 29070
0.212 5.59~0.2! 1.59 29160 - - -
0.255 5.35~0.1! 1.68 29140 4.77~0.05! 2.31 28950
0.354 4.96~0.1! 1.89 29070 4.39~0.06! 2.92 28750
0.530 4.44~0.1! 2.34 28940 3.93~0.05! 4.12 28320
0.693 - - - 3.66~0.04! 5.40 27860
0.707 4.05~0.07! 2.77 28780 3.64~0.03! 5.52 27810
1.061 - - - 3.39~0.05! 8.99 26470
1.195 3.52~0.05! 4.39 28200 - - -
1.386 3.41~0.05! 5.10 27930 - - -
1.591 3.32~0.04! 5.98 27590 - - -
1.626 3.32~0.05! 6.18 27520 - - -
1.810 3.24~0.05! 6.97 27210 - - -
2.121 3.17~0.05! 8.53 26580 - - -

TABLE I. Simulation parameters.

Chlorine LJ chain

Number of molecules 864 256
Number of sites 2 1, 2, 4
Bond length 0.63 1.00
LJ cutoff 2.5 21/6

Time step 0.001 0.001
Temperature 0.97 1.00
Density 1.088 0.84
ar-
nt
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k

the
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while for all molecular fluids, it was calculated using th
expression

PMV5(
i 51

N pipi

M i
2

1

2 (
i 51

N

(
a51

n

(
j Þ i

N

(
b51

n

r ia j bFia j b
inter , ~12!

where, as before,pi represents the total peculiar momentu
of molecule i, as defined by the equations of motion, a
Fia j b

inter represents the intermolecular force on siteia due to
site j b. This definition of the molecular pressure tensor a
sumes that the molecular peculiar momenta are correctly
fined by Eq.~7!. The pressures quoted in Tables II–V repr
sent the isotropic part of the pressure tensor, given bp
51/3Tr(P).

For our shear flow geometry, defined by Eq.~4! with ė
50, the generalized non-Newtonian shear viscosity of a fl
subject to PCF is defined as:

hS52
Pxy1Pyx

2ġ
. ~13!

For planar elongational flow, defined by Eq.~4! with ġ
50, we define a generalized nonlinear elongational visco
as:

hE5
Pyy2Pxx

4ė
. ~14!

This definition differs by a factor of14 from definitions that
appear in the rheological literature. Inclusion of this fac
ensures that as the strain rate approaches zero,hS5hE

TABLE III. Simulation results—one-site LJ fluid~T5100,r50.840!.

ė,ġ

PCF PEF

h p U h p U

0.00 - 7.86 627 - 7.83 625
0.01 - - - 1.92~0.5! 7.85 627
0.02 2.13~0.4! 7.85 626 2.03~0.3! 7.86 627
0.05 2.12~0.2! 7.85 626 2.08~0.3! 7.87 627
0.10 2.21~0.2! 7.87 627 2.04~0.1! 7.89 628
0.20 2.13~0.08! 7.88 628 1.96~0.2! 8.00 633
0.50 1.96~0.1! 8.01 633 1.85~0.06! 8.42 652
1.00 1.86~0.06! 8.41 651 1.71~0.03! 9.55 706
2.00 1.65~0.05! 9.50 703 1.64~0.03! 13.4 908
5.00 - - - 2.15~0.04! 39.7 2560

TABLE IV. Simulation results—two-site LJ fluid~T51.000,r50.840!.

ė,ġ

PCF PEF

h p U h p U

0.00 - 6.57 998 - 6.57 999
0.01 2.59~0.9! 6.55 996 3.55~1.0! 6.55 996
0.02 3.15~0.5! 6.56 998 2.96~0.6! 6.55 997
0.05 2.93~0.3! 6.57 998 3.04~0.2! 6.57 1000
0.10 2.97~0.2! 6.57 1000 2.89~0.1! 6.57 1003
0.20 2.82~0.3! 6.60 1010 2.60~0.1! 6.70 1031
0.50 2.46~0.07! 6.79 1040 2.32~0.07! 7.50 1159
1.00 2.19~0.04! 7.46 1160 2.16~0.02! 9.89 1557
2.00 2.00~0.02! 9.69 1540 2.48~0.03! 19.4 3322
5.00 2.49~0.06! 25.0 4740 4.56~0.10! 94.1 22300
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5h0. A definition of a generalized non-Newtonian viscos
for arbitrary strain rate tensors has been given by Hounk
nou, Pierleoni, and Ryckaert12 as follows:

h52
P:D
D:D

, ~15!

whereD5(¹u1(¹u)T) is the symmetric rate of strain ten
sor ~also known as the stretching tensor in the rheolog
literature!. This definition of the viscosity reduces tohS and
hE as given above when the appropriate strain rate ten
are inserted. Note that our use of the full pressure ten
rather than the excess~nonequilibrium! part alone causes n
difficulties, because the equilibrium part of the press
makes no contribution to either of the generalized viscosit

The total internal energy was calculated using:

U5(
i 51

N

(
a51

n pia
2

2mia
1 (

i 51

N21

(
a51

n

(
j 5 i 11

N

(
b51

n

f ia j b

1(
i 51

N

(
a51

n22

(
b5a12

n

f ia ib , ~16!

where the first term gives the peculiar kinetic energy,
second term gives the intermolecular potential energy,
the third term gives the intramolecular potential energy. T
site indexing scheme used in the expression for the intra
lecular potential energy given here is clearly only valid f
linear molecules, and the intramolecular term is not nee
at all for molecules with less than three sites.

V. RESULTS AND DISCUSSION

We report results for the strain rate dependence of
viscosity, pressure and total internal energy in the vari
systems studied in Tables II–V. Uncertainties in the visco
ties are given in brackets. The uncertainties in the ener
and pressures were insignificant.

A reasonable first attempt at a unified description
shear and elongational rheological data can be made by
ting all results as a function of the second scalar invaria
I 2 , of the strain rate tensor, as was done by Hounkonn
Pierleoni, and Ryckaert.12 The three scalar invariants of th
strain rate tensor,I 1 , I 2 , andI 3 , are given by30

I 15Tr~D!, I 25Tr~D"D!, I 35Tr~D"D"D!. ~17!

TABLE V. Simulation results—four-site LJ fluid~T51.000,r50.840!.

ė,ġ

PCF PEF

h p U h p U

0.00 - 5.85 1750 - 5.83 1760
0.01 3.44~1.0! 5.83 1750 3.67~0.8! 5.82 1750
0.02 4.48~0.5! 5.83 1750 4.20~0.3! 5.83 1760
0.05 4.16~0.3! 5.84 1760 4.29~0.3! 5.81 1770
0.10 3.91~0.1! 5.83 1770 4.02~0.2! 5.85 1810
0.20 3.43~0.2! 5.90 1810 3.82~0.1! 6.14 1970
0.50 2.84~0.06! 6.32 2010 3.46~0.07! 7.95 2820
1.00 2.60~0.06! 7.72 2620 3.84~0.1! 14.4 5950
2.00 2.62~0.06! 12.5 4990 5.70~0.1! 43.6 24 200
5.00 3.94~0.07! 46.6 28 700 - - -
n-
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For planar shear and planar elongational flow, the first a
third scalar invariants are equal to zero, leaving only
second scalar invariant. The second scalar invariant is rel
to the strain rate byI 252ġ2 for shear flow andI 258ė2 for
planar elongational flow. Physically,I 2 is a measure of the
rate of viscous heat dissipation in steady state flow.

First, we will discuss our results for chlorine. Later w
consider the Lennard–Jones chains as a series, includin
monatomic Lennard–Jones fluid for comparison.

Our results for chlorine cover more than three orders
magnitude, from the Newtonian regime up toI 259.00. Due
to the large number of molecules, and long simulation tim
these results have high precision, even in the low strain-
limit. This allows the Newtonian regime to be seen qu
clearly. The viscosity, pressure, and internal energy are p
ted in Fig. 1, Fig. 2, and Fig. 3 respectively. Figure 1 sho
the expected convergence of the PEF and PCF viscositie
the same value in the zero strain-rate limit. We find a lim
ing viscosity value ofh056.760.4, which agrees with the

FIG. 1. Viscosity of model chlorine liquid as a function of the second sca
invariant of the strain-rate tensorI 2 , for shear and elongational flow, atT
50.9700,r51.088.

FIG. 2. Pressure of model chlorine liquid as a function of the second sc
invariant of the strain-rate tensorI 2 , for shear and elongational flow, atT
50.9700,r51.088.
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results of Hounkonnouet al.,12 Edberget al.,13 and Travis
et al.24,25 when their results are converted from molecu
reduced units to atomic reduced units.~This requires multi-
plication of their results by a factor of& to account for the
factor of 2 difference between molecular mass and
atomic site mass.! Figure 1 also displays the emerging d
ference between the two viscosities at higher values ofI 2 .
This difference is significant in our results, but it is obscur
by statistical error in the results of Hounkonnouet al.12 For
comparison, Table VI shows the results of Hounkonn
et al. converted to atomic reduced units alongside our
sults.

Figure 1, Fig. 2, and Fig. 3 all show that only the lowe
three values ofI 2 lie clearly inside the Newtonian regime
which ends atI 2'0.01, but they also show that the approx
mate agreement between these quantities for the two type
flow persists well beyond the end of the Newtonian regim

We now consider the molecular spin. For diatomic a
larger molecules, the equation of change for the spin ang
momentum density is given by24,25

r
dS

dt
52¹•Q22PM

a , ~18!

whereQ is the couple tensor, which represents the diffus
flow of spin angular momentum andPM

a represents the
pseudovector dual of the antisymmetric component of
molecular pressure tensor. The couple tensor term
negligible24 and the linear constitutive equation forPM

a can
be written as

PM
a 52h r~¹3u22v!, ~19!

FIG. 3. Internal energy of model chlorine liquid as a function of the sec
scalar invariant of the strain-rate tensorI 2 , for shear and elongational flow
at T50.9700,r51.088.

TABLE VI. Comparison of our results with HPR~Ref. 12!—liquid chlorine.

I 2 hS ~HPR! hE ~HPR! hS ~This work! hE ~This work!

0.09 5.5~0.3! - 5.6~0.2! -
1.00 4.03~0.17! 4.33~0.17! 4.05~0.07! 4.39~0.06!
3.83 3.35~0.11! 3.51~0.08! 3.41~0.05! 3.66~0.04!
9.00 2.94~0.08! 3.30~0.06! 3.17~0.05! 3.39~0.05!
r
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whereh r is the vortex viscosity andv is the streaming com-
ponent of the local molecular angular velocity vector. In
steady state, the left hand side of Eq.~18! is equal to zero.
Using Eq.~19!, this implies that in PCF in the linear regime
we should find

vz52
ġ

2
~20!

at low strain rates. This is observed in the zero strain-r
limit for all systems with more than one site that were stu
ied. The results for chlorine are shown in Fig. 4. Outside
linear regime, the rate of change of shear-induced rota
with increasing strain rate decreases. This is similar to w
has been found in simulations of model alkanes,31–33 where
the decrease in the slope of the spin angular velocity gr
corresponds to rapidly increasing pressure and saturatio
the shear induced order. The value ofvz at the lowest strain
rate was20.015, and since this simulation ran for 200 r
duced time units, each molecule rotated, on average,
times during the simulation.

In the case of PEF, we have¹3u50, and so we expec
v50 which is verified for chlorine as shown in Fig. 5. Th

d
FIG. 4. Molecular spin angular velocity as a function of shear strain rate
liquid chlorine atT50.9700,r51.088. The solid line has a slope of20.5,
the result obtained from linear nonequilibrium thermodynamics.

FIG. 5. Molecular spin angular velocity as a function of elongational str
rate for liquid chlorine atT50.9700,r51.088.
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is not a trivial result—it indicates that our algorithm, in pa
ticular our thermostat, does not apply any unintended tor
to the molecules, and can be taken as validating the mol
lar thermostating approach taken here. This is further s
ported by the observation that the antisymmetric part of
molecular stress tensor was zero to within uncertainties
the steady state for all of our nonequilibrium simulations

We now turn to the analysis of the results for Lennar
Jones monatomic and chain fluids.

The viscosity of the monatomic fluid is plotted againstI 2

in Fig. 6. The two viscosity curves shown in Fig. 6 conver
to a common value asI 2→0, giving a limiting zero strain-
rate viscosity of 2.160.2. The Newtonian region extends
I 250.1, where we observe the beginning of a shear thinn
region. Note that our results for the monatomic fluid exte
to higher values ofI 2 than were covered in our simulation
of liquid chlorine, allowing us to observe the high strain ra
regime. AboveI 2532 ~ė52.00 or ġ54.00!, shear thicken-
ing behavior is observed. This is a common feature in sim
lations where the density remains constant as the strain
is increased, and it is accompanied by a dramatic increas
the isotropic pressure. In constant pressure simulation
liquid alkanes, it has been shown that if the volume is
lowed to increase, the shear thickening that is observed
der constant volume conditions disappears. The disapp
ance of shear thickening is accompanied by a dramatic
reduced first normal stress difference and enhanced mol
lar spin.

If the rates of heat dissipation at the highest strain ra
that we have simulated are converted directly into phys
units using the Lennard–Jones parameters; for argon, for
ample, they are extremely high, and in fact unphysical. Ho
ever, they are not unrealistic when expressed in redu
units, and we prefer to think of our model molecules as r
resenting appropriately scaled models of molecular fluids
which reduced strain rates of the order of unity are obse
able in the laboratory. In this sense, the two-site molecu
for example, should be regarded as a dumbbell model f
polymer, with the appropriate mass, energy and distance
duction parameters.

FIG. 6. Viscosity of an atomic LJ liquid as a function of the second sca
invariant of the strain-rate tensorI 2 , for shear and elongational flow atT
51.000 andr50.840.
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We observed string phases19 in the PCF simulations of
the monatomic LJ fluid at the highest strain rate used,
have not included the data in this paper. Since there wa
large gap between the highest and second highest strain
used in the PCF simulations, the exact value ofġ above
which string phases will always be observed is unknown
has been shown24,25 that string phases occur when the velo
ity profile assumed in the equations of motion becomes
stable, and they can be removed by computing, rather t
assuming, the streaming velocity profile that is used to c
culate the thermal components of the momenta.

The data show that the steady state shear and elo
tional rheology of this fluid can be described in terms o
single parameter,I 2 . Of all the fluids studied in this work
the LJ fluid is the only one that is very well described in th
way.

Figures 7 and 8 show the strain-rate dependence of
viscosity for the two- and four-site molecules, respective
These results show an increase in the difference between
PEF and PCF results as the chain length increases.

rFIG. 7. Viscosity of a two-site LJ tangent chain~i.e., LJ dumbbell! liquid as
a function of the second scalar invariant of the strain-rate tensorI 2 , for
shear and elongational flow atT51.000 andr50.840.

FIG. 8. Viscosity of a four-site LJ tangent chain liquid as a function of t
second scalar invariant of the strain-rate tensorI 2 , for shear and elonga-
tional flow atT51.000 andr50.840.
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Extra runs have been done for the four-site system
that a more detailed plot of the viscosity differences ver
I 2 could be made. The results are shown in Fig. 9. The
cosity difference (hPEF2hPCF) clearly increases with in-
creasingI 2 , but not in a simple way. Three distinct region
are apparent in Fig. 9. At low strain rates, the viscosity d
ference is zero within uncertainties, and then grows appr
mately logarithmically until it reaches a plateau value th
corresponds to the end of the shear thinning and elonga
thinning regions. From there, it appears to grow rapi
again.

Baranyai and Cummings11 proposed that shear and elo
gational flows should be equivalent, even in the nonlin
regime, provided that the first normal stress difference,N1

5Pyy2Pxx in shear flow is zero. This is confirmed by ou
data, shown in Table VII. It is only for the simple LJ flui
that we findN150 within uncertainties, well into the non
linear regime. In fact,N1 deviates from zero only for the
highest strain rate (I 2550) for the LJ fluid, whereas it begin
to deviate from zero for the two- and four-site molecules
approximately the same value ofI 2 at which the two viscosi-
ties begin to differ significantly.

The absence of first normal stress differences in sh
flow is often associated with inelasticity.30,34–36On the other
hand, the elasticity of a fluid has no effect on the steady s

FIG. 9. Difference between elongational and shear viscosities for four
LJ chains atT51.000 andr50.840. Data from previous plots are repr
sented by circles and new data are represented by squares.

TABLE VII. Normal stress differences—one-, two-, and four-site mo
ecules.

I 2

One-site Two-site Four-site

N1 N2 error N1 N2 error N1 N2 error

0.0002 20.02 0.01 0.03 0.00 0.00 0.02 0.00 0.01 0.
0.0008 0.00 0.00 0.03 0.0020.01 0.02 0.02 20.01 0.03
0.005 0.01 0.01 0.0320.01 0.00 0.05 0.0320.01 0.03
0.02 20.01 0.00 0.05 0.0320.02 0.05 0.14 20.02 0.05
0.08 0.00 20.01 0.05 0.16 20.10 0.10 0.34 20.14 0.05
0.5 20.01 20.04 0.10 0.43 20.25 0.10 0.85 20.34 0.05
2 0.04 20.32 0.14 0.63 20.50 0.10 1.53 20.73 0.10
8 0.10 20.84 0.14 1.18 21.25 0.10 3.2 21.87 0.10

50 1.90 21.05 0.14 4.86 24.99 0.40 14.9428.74 0.50
o
s
-

-
i-
t
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r

t
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te

elongational stress of the fluid.36 Thus the constitutive equa
tion for steady elongational flow is identical to the constit
tive equation for inelastic shear flow. Both are described
the Reiner–Rivlin equation, which expresses the stress
sor as

P5p11f1~ I 2 ,I 3!D1f2~ I 2 ,I 3!D2. ~21!

For the flows discussed here,I 350, giving the result that the
stress tensor, and hence the viscosity, will be a function o
of the second scalar invariant of the strain rate tensor, as
have found for the monatomic fluid.

The LJ fluid studied here is evidently a good approxim
tion to an inelastic fluid. It is worth noting that a hard sphe
fluid is apparently perfectly inelastic in the linear regime
all frequencies.34 The difference between the behavior of th
atomic and molecular fluids found here is consistent with
understanding of the physical mechanisms determining
relaxation of atomic and molecular fluids. The response o
atomic fluid to shear is governed by the elliptical distorti
of the radial distribution function, but it is primarily orienta
tional ordering that determines the response of nonsphe
molecular fluids to shear flow. The relaxation times, a
hence the decay times of the stress autocorrelation funct
for these fluids, are markedly different, leading to a primar
inelastic response for the rapidly relaxing atomic fluids an
substantially elastic response in the case of the molec
fluids.

The strain rate dependence of the nonequilibrium pr
sure and internal energy differences for the one-, two-,
four-site LJ molecules are shown in Fig. 10 and Fig. 1
respectively. In previous work on monatomic fluids27 and
liquid alkanes, it has often been found that the pressure
energy increase in the nonlinear regime due to shear flow
both proportional toġ3/2. Written in terms ofI 2 , these rela-
tionships become

Dp5p2p05AI2
a , ~22!

DU5U2U05BI2
b , ~23!

te
FIG. 10. Isotropic pressure change~compared to equilibrium! for one-,
two-, and four-site fluids under shear and elongational flow. Symbols: o
site PCF~circles!, PEF~squares!; two-site PCF~diamonds!, PEF~crosses!;
four-site PCF~up triangles!, PEF~down triangles!. Results of power law fits
are given in Table VIII.
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wherea5b50.75. We have fitted power laws of the typ
given in Eqs.~22! and~23! to the data shown in Fig. 10 an
Fig. 11, and the results are given in Table VIII. Table V
shows that the exponents are all consistently higher than
value of 0.75 found in other work. This may be due to t
difference in thermodynamic state points chosen in the
ferent studies. Most of the results for simple LJ fluids ha
been obtained at the LJ triple point~T50.722,r50.8442!
which is slightly different from the conditions in these sim
lations ~T51.00,r50.844!. Our slightly higher temperature
presumably results in faster relaxation and enhanced fluid
in contrast to the typical triple point behavior including th
enhancedt3/2 tail in the stress autocorrelation function th
has often been discussed in the literature. It should also
noted that our exponents, which range from 0.81 up to 1
are much closer to the result that would be obtained from
leading term of a power series expansion ofDp in the strain
rate, i.e., Dp}ġ2}I 2 . Indeed, recent work by Marcell
et al.37 on shearing fluids with explicit three-body force
show an analytic dependence of pressure on strain rate.
possible that theDp}ġ3/2 behavior is only found near th
triple point.

Finally, although we do not present the results in det
we will make a brief comment on the spin angular velocit
of the LJ chain molecules. The strain-rate dependence o
molecular spin of the LJ chains was similar to that of ch
rine, as discussed earlier. In particular, our simulations v
fied the expected zero value of the average spin angular
locity in planar elongational flow at all strain rates, andv
52ġ/2 for planar shear flow in the linear regime.

FIG. 11. Internal energy change~compared to equilibrium! for one-, two-,
and four-site fluids under shear and elongational flow. Symbols: one
PCF~circles!, PEF~squares!; two-site PCF~diamonds!, PEF~crosses!; four-
site PCF~up triangles!, PEF~down triangles!. Results of power law fits are
given in Table VIII.
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A general comment should be made regarding the r
ability of our results in different strain-rate regimes. Th
agreement of our results for the limiting Newtonian viscos
of chlorine with those of Hounkonnouet al.12 ~computed
from the Green–Kubo correlation function expression! indi-
cates that the nonequilibrium and equilibrium molecular d
namics results agree in the zero strain-rate limit. This
also been shown to high precision in simulations of mo
alkanes.33 At low strain rates, the approach to the steady st
is comparatively slow, and this could be a source of syste
atic error in the low strain rate region. Yet we observed t
results from ~usually around 10! consecutive runs in the
equilibrated steady state were in good agreement within
tistical errors, even at low strain rates. Thus our results
expected to be very reliable in the Newtonian region. T
statistical reliability of our data increases as the strain r
increases, and is not a cause for concern outside the N
tonian region, but other issues become significant as
strain rate is increased. Differences in results at high st
rates are obtained when different thermostatting mechani
are used. We have not used the clearly flawed atomic t
mostat for our molecular fluid simulations, but other mo
subtle differences exist. It has been demonstrated for ato
systems that different results are obtained when the t
thermal kinetic energy, or only the thermal kinetic ener
computed from thex, y, or z component of the thermal mo
mentum is kept constant.5 These are not the only possib
measures of temperature that could be controlled by
thermostat—the configurational and normal temperatu
have also recently been introduced as candidates for a
sibly more ‘‘realistic’’ measure of temperature under no
equilibrium conditions.38 These temperatures are all equal
equilibrium, but it remains to be determined which o
should be controlled in order to most closely mimic typic
experimental nonequilibrium conditions.

VI. CONCLUSION

We have validated the application of Kraynik–Reine
periodic boundary conditions in nonequilibrium molecul
dynamics simulations of molecular fluids and have obtain
very precise data for the shear and elongational rheolog
properties of simple Lennard–Jones fluids and sm
Lennard–Jones chain fluids. Where comparisons are
sible, our results agree with published results obtained
other methods, and we also find agreement with the expe
limiting behavior at low strain rates.

The high precision of our results has allowed us to p
form a detailed comparison between the shear and elo
tional flow properties of chlorine and a series of other sm
molecular fluids.

te
ncer-
TABLE VIII. Power law fits for nonequilibrium pressure and energy differences—LJ chain molecules. U
tainties are given in brackets.

System A ~PCF! a ~PCF! A ~PEF! a ~PEF! B ~PCF! b ~PCF! B ~PEF! b ~PEF!

one-site 0.28~0.02! 0.87~0.05! 0.37~0.04! 0.81~0.03! 14~2! 0.81~0.07! 13~2! 0.93~0.04!
two-site 0.44~0.02! 0.96~0.02! 0.44~0.02! 0.99~0.02! 83~9! 0.95~0.05! 83~11! 1.01~0.04!
four-site 0.93~0.02! 0.96~0.01! 1.01~0.02! 1.04~0.01! 527~60! 0.95~0.03! 598~37! 1.01~0.02!
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We have found that the shear and elongational rheol
cal properties of a simple Lennard–Jones fluid at the s
point T51.00,r50.844 fall on a universal curve when plo
ted as a function of the second scalar invariant of the st
rate tensor,I 2 , as previously suggested by Ryckaertet al.
and Baranyai and Cummings. This means that this fluid
be regarded as almost inelastic. In contrast, the molec
fluids all show deviations from this behavior outside t
Newtonian region. We find that this is consistent with t
suggestion of Baranyai and Cummings that shear and e
gational flows are equivalent provided that the first norm
stress difference remains close to zero.

The strain-rate dependence of the pressure and en
increases due to shear and elongational flow have also
studied. We find power law behavior with exponents th
differ from those found in previous work conducted at low
temperatures, indicating that these exponents are depen
on the thermodynamic state of the system.

The spin of molecules under shear and elongational fl
has also been investigated. Our thermostating techniqu
validated by the finding that the average molecular ang
velocity in elongational flow is zero at all strain rates,
expected, and we also observe the expected dependen
the molecular angular velocity on strain rate in shear flow
the linear regime.
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